常见的导数公式有哪些 导数运算法则

2022-07-17 23:24:00 好学途 升学百科 来源:互联网

 

常见的导数公式有哪些 导数运算法则:1.常见的导数公式有哪些y=f(x)=c (c为常数),则f(x)=0f(x)=x^n (n不等于0) f(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f(……好学途www.vaiok.com)小编为你整理了本篇文章,希望能解对你有所帮助!

 

1.常见的导数公式有哪些

y=f(x)=c (c为常数),则f'(x)=0

常见的导数公式有哪些 导数运算法则

f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)

f(x)=lnx f'(x)=1/x (x>0)

f(x)=tanx f'(x)=1/cos^2 x

f(x)=cotx f'(x)=- 1/sin^2 x

注意事项

1.不是所有的函数都可以求导;

2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

2.导数运算法则

加(减)法则:(f(x)+/-g(x))'=f'(x)+/- g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

3.什么是导数

1. 导数定义

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

2. 几何意义

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

 

本文标题:常见的导数公式有哪些 导数运算法则

本文链接:http://www.vaiok.com/a/259864.html

欢迎转发给你身边有需要的人,是朋友就给他提供帮助!

 

声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。

 

相关内容