有理数和无理数的区别 有理数的基本运算法则

2022-07-17 23:18:00 好学途 升学百科 来源:互联网

 

有理数和无理数的区别 有理数的基本运算法则:一、有理数和无理数的区别1、有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。2、所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.3、范围不同……好学途www.vaiok.com)小编为你整理了本篇文章,希望能解对你有所帮助!

 

有理数和无理数的区别 有理数的基本运算法则

一、有理数和无理数的区别

1、有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。

2、所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.

3、范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。

4、有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。

二、有理数的基本运算法则

一、加法运算

1、同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两数相加得0。

4、一个数同0相加仍得这个数。

5、互为相反数的两个数,可以先相加。

6、符号相同的数可以先相加。

7、分母相同的数可以先相加。

8、几个数相加能得整数的可以先相加。

二、减法运算

减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

三、乘法运算

1、同号得正,异号得负,并把绝对值相乘。

2、任何数与零相乘,都得零。

3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

4、几个数相乘,有一个因数为零,积就为零。

5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘

四、除法运算

1、除以一个不等于零的数,等于乘这个数的倒数。

2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。

注意:

零不能做除数和分母。有理数的除法与乘法是互逆运算。

在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。

 

本文标题:有理数和无理数的区别 有理数的基本运算法则

本文链接:http://www.vaiok.com/a/255882.html

欢迎转发给你身边有需要的人,是朋友就给他提供帮助!

 

声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。

 

相关内容