导数概念 微分概念
导数概念 微分概念:一、导数概念d是取无穷小量的意思,数学里边把它叫微分。dy就是对y取无穷小量,dx就是对x取无穷小量。dy/dx就是两个无穷小量的比值,也就是y关于x的变化率,也叫关于x的导函数,……好学途(www.vaiok.com)小编为你整理了本篇文章,希望能解对你有所帮助!
一、导数概念
d是取无穷小量的意思,数学里边把它叫微分。dy就是对y取无穷小量,dx就是对x取无穷小量。dy/dx就是两个无穷小量的比值,也就是y关于x的变化率,也叫关于x的导函数,简称导数。
导函数
二、微分概念
设函数y=f(x)在x的邻域内有定义,x及x+Δx在此区间内。如果函数的增量Δy=f(x+Δx)-f(x)可表示为Δy=AΔx+o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy=AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx=Δx。于是函数y=f(x)的微分又可记作dy=f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。
三、微分的应用
增函数与减函数
微分是一个鉴别函数(在指定定义域内)为增函数或减函数的有效方法。
鉴别方法:dy/dx与0进行比较,dy/dx大于0时,说明dx增加为正值时,dy增加为正值,所以函数为增函数;dy/dx小于0时,说明dx增加为正值时,dy增加为负值,所以函数为减函数。
本文标题:导数概念 微分概念
本文链接:http://www.vaiok.com/a/247556.html
欢迎转发给你身边有需要的人,是朋友就给他提供帮助!
声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。