​​通径长度 双曲线的定义

2022-07-17 22:55:00 好学途 升学百科 来源:互联网

 

​​通径长度 双曲线的定义:一、通径长度椭圆、双曲线的通径长均为|AB|=2b^2/a(其中a是长轴或实轴的1/2,b是短轴或虚轴的1/2,不论椭圆或双曲线的焦点在x轴还是y轴都有这个结论)抛物线的通径长为|……好学途www.vaiok.com)小编为你整理了本篇文章,希望能解对你有所帮助!

 

​​通径长度 双曲线的定义

一、通径长度

椭圆、双曲线的通径长均为|AB|=2b^2/a

(其中a是长轴或实轴的1/2,b是短轴或虚轴的1/2,不论椭圆或双曲线的焦点在x轴还是y轴都有这个结论)

抛物线的通径长为|AB|=4p

(其中p为抛物线焦准距的1/2)

过焦点的弦中,通径是最短的

这个结论只对椭圆和抛物线适用,对双曲线须另外讨论

如果双曲线的离心率e>根号2,则过焦点的弦以实轴为最短,即最短的焦点弦为2a

如果双曲线的离心率e=根号2,则通径与实轴等长,它们都是最短的焦点弦

如果双曲线的离心率0a>0时,

|MN|=2ab^2(k^2+1)/[(bk)^2+a^2]

二、双曲线的定义

定义1:平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点

定义2:平面内,到给定一点及一直线的距离之比为大于1的常数的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线

定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。

定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。

 

本文标题:​​通径长度 双曲线的定义

本文链接:http://www.vaiok.com/a/246213.html

欢迎转发给你身边有需要的人,是朋友就给他提供帮助!

 

声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。

 

相关内容