​相似矩阵的特征向量一样吗 向量的表示方法

2022-07-17 22:54:00 好学途 升学百科 来源:互联网

 

​相似矩阵的特征向量一样吗 向量的表示方法:一、相似矩阵的特征向量一样吗没有这种性质。特征向量之间是这样联系的:Ax=λx,P^{-1}BP=A,那么B(Px)=λ(Px)在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,……好学途www.vaiok.com)小编为你整理了本篇文章,希望能解对你有所帮助!

 

一、相似矩阵的特征向量一样吗

没有这种性质。特征向量之间是这样联系的:Ax=λx,P^{-1}BP=A,那么B(Px)=λ(Px)

​相似矩阵的特征向量一样吗 向量的表示方法

在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B。相似矩阵具有相同的可逆性,当它们可逆时,则它们的逆矩阵也相似。

特征函数满足如下特征值方程:

其中λ是该函数所对应的特征值。这样一个时间的函数,如果λ

=

0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如,理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。

该特征值方程的一个解是N

=

exp(λt),也即指数函数;这样,该函数是微分算子d/dt的特征值为λ的特征函数。若λ是负数,我们称N的演变为指数衰减;若它是正数,则称指数增长。λ的值可以是一个任意复数。

二、向量的表示方法

1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。

2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。)

3、坐标表示:

在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。

在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z),使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, k)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, k),也就是点P的坐标。向量OP称为点P的位置向量。

当然,对于空间多维向量,可以通过类推得到。

 

本文标题:​相似矩阵的特征向量一样吗 向量的表示方法

本文链接:http://www.vaiok.com/a/245800.html

欢迎转发给你身边有需要的人,是朋友就给他提供帮助!

 

声明:本文图片、文字、视频等内容来源于互联网,本站无法甄别其准确性,建议谨慎参考,本站不对您因参考本文所带来的任何后果负责!本站尊重并保护知识产权,本文版权归原作者所有,根据《信息网络传播权保护条例》,如果我们转载内容侵犯了您的权利,请及时与我们联系,我们会做删除处理,谢谢。

 

相关内容